
Topology Control for Efficient Information Dissemination in Ad-hoc Networks

Esther H. Jennings Clayton M. Okino
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

{jennings, cokino}@arcadia.jpl.nasa.gov

Abstract—In this paper, we explore the information dissemination
problem in ad-hoc wireless networks. First, we analyze the probabil-
ity of successful broadcast, assuming: the nodes are uniformly dis-
tributed, the available area has a lower bound relative to the total
number of nodes, and there is zero knowledge of the overall topology
of the network. By showing that the probability of successful broad-
cast within a bounded number of transmissions is small, we are moti-
vated to extract good graph topologies to minimize the overall trans-
missions. Three algorithms are used to generate topologies of the net-
work with guaranteed connectivity. These are the minimum radius
graph, the relative neighborhood graph and the minimum spanning
tree. Our simulation shows that the relative neighborhood graph has
certain good graph properties, which makes it suitable for efficient
information dissemination.

keywords: topology control, connectivity, transmission
power, information dissemination, wireless networks.

I. I NTRODUCTION

Present day technology enables us to build and deploy
wireless nodes to collect and disseminate information for a
vast number of applications ranging from space exploration
and environmental monitoring to military operations. Par-
allel to the development of wireless node technology is the
increased interest in the study of ad-hoc wireless networks.
Unlike a wired network, which typically has a well-defined
underlying infrastructure, an ad-hoc wireless network’s in-
frastructure is not known apriori and may in fact change
over time [1]. In this work, we are motivated to identify
recognizable patterns (i.e. efficient link dependent struc-
ture) from a set of randomly placed nodes, such that we
can use this information to construct a communication in-
frastructure with desirable properties. Once the communi-
cation topology is defined, we can then solve routing and
scheduling problems leveraging this topology.

Conventionally, the topology of an ad-hoc network can
be defined by the transmission power of each node. If the
power is too low, we cannot guarantee connectivity of all
the nodes. If the power is too high, there could be too much
interference (i.e. multi-user interference may not allow for
efficient use of bandwidth per transmission power.). In a
sensor network where each node has limited battery power
(possibly rechargeable), the objectives are:
• good energy-per-bit performance
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tract with the National Aeronautics and Space Administration.

• reliability
We aim for a topology which guarantees connectivity while
minimizing power and interference. In particular, we con-
sider networks where minimizing delay is less important
than ensuring good energy-per-bit performance. Related
work considering other objectives can be found in [2], [3],
[4].

To determine the suitability of the topologies examined,
we consider information dissemination (broadcast) on these
topologies. Information dissemination is needed in cooper-
ative sensor networks [5] and cooperative modulation tech-
niques [6], where the main objective is to prolong the life
time of sensor nodes.

We consider the topology control problem from two
complementary approaches. In the first approach, we con-
sider minimizing interference by imposing a spacial con-
straint on the node locations while assuming a fixed trans-
mission radius for all the nodes. However, our analysis
shows that this constraint has a negative effect on informa-
tion dissemination. As the number of nodes and the area
increase, the probability of successful broadcast within a
constant number of transmissions decreases drastically as
the network becomes sparser. In the second approach, we
consider a proximity graph called the Relative Neighbor-
hood Graph (RNG). RNGs are concerned with extracting
the shapes and structures of point sets, and have been suc-
cessfully used in many areas such as archeology [7], biol-
ogy [8], pattern recognition [9], and morphological prop-
erties of empirical networks [10]. We examine the RNG
as a viable means of achieving good performance for con-
structing a back-bone communication architecture for a set
of randomly placed nodes. From our simulation, RNG dis-
plays desirable properties in terms of average transmission
radius (related to power), average node degree (related to
interference), and reliability (fault-tolerant).

II. TOPOLOGYCONTROL BY SPACIAL CONSTRAINT

Given n nodes such that each node covers a RF circu-
lar areaπd2

RF = log n+c(n)
n , Gupta and Kumar showed that

network connectivity approaches probability1 asc(n) ap-
proaches infinity, wherec(n) is the connectivity measure
defined in [11]. Intuitively, as the number of nodes in-
creases, the connectivity of the network also increases.

To minimize interference, we impose a spacial constraint



on the planeAn containingn nodes, with respect to a com-
mon transmission radiusd. Since the nodes are randomly
placed inAn with uniform distribution, we can decrease in-
terference by makingA large enough so that the likelihood
of nodes interfering with each other is small. We then an-
alyze the probability of successful broadcast from a source
node, using a bounded number of transmissions.

Let li, lj ∈ R2 be the locations of nodesvi andvj re-
spectively, wherevi 6= vj . Direct connectivity between any
pair of nodesvi andvj is defined by the transmission ra-
diusd. Specifically, forvi andvj , we have‖ li − lj ‖ ≤ d,
where the norm used is the Euclidean norm (i.e.,L2-norm).
We say thatvi andvj have multi-hop connectivity if there
is a non-empty set of nodesP such that information can be
routed betweenvi andvj through the nodes ofP .

Givenn nodes, letlsrc, l1, l2, . . . , ln−1 ∈ R2 be the lo-
cations of the source node and nodesv1, v2, . . . , vn−1 re-
spectively, and letV contain all the nodes. LetN (li) be
the maximal set of nodes contained in the circle of radiusd
centered atli. Specifically, we haveN (li) = {vz : vz ∈ V
and‖li − lz‖ ≤ d}.

Assume each node has a common transmission radius of
d, the area covered by a nodevi is πd2 centered atli. We
useA(vi) to denote the circular area covered byvi. Sup-
pose nodesvi andvj are directly connected. Ignoring edge
effects, the maximum area where a third nodevk can reside
such thatvk is directly connected tovj but not tovi, is upper
bounded byA(vj)− [A(vi) ∩A(vj)]. Let α = 2π + 3

√
3.

Lemma 1:Suppose there exists nodesvi, vj at location
li, lj ∈ R2 respectively, such that‖li − lj‖ = d. If each
node can cover an area with radiusd, the non-overlapping
area of either nodevi or vj is αd2

6 .
Proof of Lemma 1 : Consider Figure 1, where two nodes
are separated by distanced, and RF radial transmission dis-
tance of nodesvi andvj aredi anddj respectively, where
di = dj = d.

di

dj

vi
vj

d

θ
d/2

Fig. 1. Non-overlapping area (shaded) with respect to Nodevj .

Each node covers an area ofπd2. Sinceli (Nodevi) and
lj (Node vj) are exactlyd apart, then there exists a per-
pendicular line betweenli andlj such that it bisects the line
joining li andlj . Thus, we can computeθ in Figure 1 asθ =
cos−1(d/2

d ) = cos−1(1/2) = π/3. Since the angle repre-
senting the overlap is twice the angleθ, the area encom-
passed by the arc of the two points is1

22θd2 = πd2

3 . Sub-
tracting the triangular area encompassed by the arc, we have

∆ = πd2

3 − 2 · 1
2 (
√

3d
2 )(d

2 ) = πd2

3 −
√

3d2

4 = (4π−3
√

3)d2

12 .
Since the overlap occurs on both sides of the perpen-

dicular line bisecting the line joiningli and lj , we have

2∆ = (4π−3
√

3)d2

6 . To obtain the non-overlapping (shaded)
areaAnon(d), we have

Anon(d) = πd2 − 2∆

= πd2 − (4π − 3
√

3)d2

6

=
α d2

6
.

To impose a spacial constraint, we computeAn as fol-
lows. The first node is placed in a circle ofπ d2, where the
source node is placed in the center of the circle. The next
n−2 nodes are scattered over a total area of(n−2) α d2

6 to
avoid interference. We do not need to consider additional
space for the last node. Thus, we select

An ≥ π d2 +
(n− 2)α d2

6
, (1)

as a lower bound on the spacial placements of nodes.
We now analyze the total number of transmissions re-

quired for the broadcast of a single bit, which is topology
independent and without any knowledge of the topology.
Let Tsrc be the number of transmissions required to broad-
cast error free in a multi-hop manner from the source node.

Theorem 2:Considern nodes with broadcast radiusd
randomly placed over areaAn with uniform distribution.
The upper bound on the probability of a node requiring
T = k transmissions to propagate a bit of information to all
othern−1 nodes is upper bounded byG(k, n)(d2/An)n−1,
where

G(k, n) =
6π(2π + 3

√
3)k−1[4π − 3

√
3 + αk]n−1−k

6n−1
;

using (1), we have

Pr{Tsrc(n) = k} ≤ 6παk−1[4π − 3
√

3 + αk]n−1−k

(6π + α(n− 2))n−1
.

Proof of Theorem 2:
Let lsrc be the location of the source node. Letli be the
location ofvi, where1 ≤ i ≤ n − 1. For the broadcast
of a bit from the source requiring a single transmission to
another nodevi, the receiving node must be within radius
distanced of the source node, and so the probability of a
single transmission to a single node,Pr{Tsrc(1) = 1}, we
have

Pr{Tsrc(1) = 1} = Pr{li ∈ A(lsrc)}

=
πd2

An

4
= pfirst . (2)



The probability of a single transmission from the source
node to all othern − 1 nodes ispn−1

first. For nodes to re-
quire multiple transmissions, the spatial allowable area not
in contact with any other nodes, and thus requiring more
transmissions, is upper bounded by the non-overlapping
area between two nodes w.r.t. one of the nodes. Thus,
the probability of broadcasting a bit over any transmission
other than the first transmission,ptrans can be written as
the probability of the source node propagating throughvi

to transmit a bit tovj such thatvj is at a distance larger
thand. The number of transmissions is lower bounded by
the number of hops. Thus, using Lemma 1, we have

ptrans ≤ Pr{li ∈ N (lsrc)
⋂

lj ∈ N (li)/lj /∈ N (lsrc)}

=
αd2

6An
. (3)

For a total ofn nodes where the source node needs to prop-
agate overi transmissions to all of the othern − 1 nodes,
there aren−1−i nodes that are allowed to placed anywhere
within the allowable area of transmission. Thus, the proba-
bility of the n−1−i nodes residing within the transmission
area has an upper bound of

pothers(i) =
1

An

(
π d2 +

(i− 1)α d2

6

)

=
[4π − 3

√
3 + αi]d2

6An
. (4)

Using (2), (3), and (4), we can upper bound the legiti-
mate area required in order to transmitTsrc(n) = k as
the probability of at least one node contained in the ini-
tial space, at least one node contained in each of the non-
overlapping spaces (equivalent to thek − 1 transmissions),
and all other nodes contained anywhere among the allow-
able space. Thus, we have

Pr{Tsrc(n) = k} ≤ pfirst · pk−1
trans · pothers(k)n−1−k

=
πd2

An
·
(

αd2

6An

)k−1

·
(

[4π − 3
√

3 + αk]d2

6An

)n−1−k

= G(k, n)
d2(n−1)

An−1
n

. (5)

For space constraints, letF (α, k) = 4π−3
√

3+αk. Com-
bining (5) and (1), we obtain

Pr{Th(n) = k} ≤ 6παk−1F (α, k)n−1−kd2(n−1)

6n−1An−1
n

≤ 6παk−1F (α, k)n−1−kd2(n−1)6n−1

6n−1[(6π + α(n− 2))d2]n−1

=
6παk−1F (α, k)n−1−k

(6π + α(n− 2))n−1

=
6παk−1[4π − 3

√
3 + αk]n−1−k

(6π + α(n− 2))n−1
,

proving Theorem 2.
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Fig. 2. Probability of number of transmissions forn independent uni-
formly spaced nodes.

As the above analysis of Theorem 2 and plot of Figure 2
shows, the upper bound probability of successful informa-
tion dissemination with a fixed number of transmissions is
small given a lower bound constraint on the allowable area
of uniformly placing nodes. In other words, to minimize in-
terference by imposing a spacial constraint does not give us
a communication graph suitable for information dissemina-
tion. This discovery justifies our next approach where we
look for desirable structural properties inherent in the node
placements, and we use these properties to select a commu-
nication topology for efficient information dissemination.

III. T OPOLOGYCONTROL BY PROXIMITY GRAPHS

For the purpose of information dissemination, we must
guarantee a connected communication topology. In this ini-
tial study, we propose three classes of topologies which
meet the connectivity requirement and we compare the
graph properties of these by simulation. These graphs are:
(1) minimum radius, (2) relative neighborhood graph and
(3) minimum spanning tree. We will discuss each class
of graphs in more detail in forthcoming subsections. The
graph properties we are interested in are:
• radius: proportional to power over data rate.
• hop diameter: the number of hops (network diameter)
can be used as a lower bound for the number of transmis-
sions.
• edge density: fewer edges simplifies the global schedul-
ing.
• node degree: affects the number of time slots (or fre-
quencies) needed in local scheduling, i.e., non-interfering
nodes can use the same time slots (frequency) for local
communication.
• number of biconnected components: this shows the
number of weak points within the network.
• size of largest biconnected component: used to mea-
sure the network robustness.



A. Minimum Radius (minR)

In this class of graphs, we assume the nodes have a com-
mon transmission radiusd. We then compute the smallest
value ford which guarantees connectivity. LetA denote the
square area containing the nodes. A side ofA has length√

A. The algorithm iteratively performs a binary search for
the smallestd. In each iteration, the algorithm computes a
graph with transmission radiusd and checks if the graph is
connected. If the graph is connected, thend is decreased,
otherwise,d is increased. The algorithm proceeds in iter-
ations until we find the smallestd such that, usingd, the
communication graph is connected but when usingd − 1,
the communication graph is partitioned. For simplicity of
simulation, we assume the nodes’ coordinates andd are in-
tegers. In Figure 3, we show a minR graph with 50 nodes.

Fig. 3. Minimum (fixed) Radius Graph with 50 nodes

B. Relative Neighborhood Graph

The relative neighborhood graph (RNG) of a node set
V in Euclidean space is the graphG = (V, E), where
(vi, vj) ∈ E if and only if there is no nodevz ∈ V such
that‖ li − lz ‖ < ‖ li − lj ‖ and‖ lj − lz ‖ < ‖ li − lj ‖,
or equivalently, the edge between nodesvi andvj is valid
if there does not exists any node closer to bothvi andvj .
Referring back to Figure 1, a radius of‖ li− lj ‖ is used for
the pair of nodesvi andvj . Note that, in RNG, a different
radius may be used for each pair of nodes, and so for Fig-
ure 1, we could havedi 6= dj . If the intersection ofA(vi)
andA(vj) does not contain any other nodes, then Nodevi

and Nodevj are relative neighbors (i.e. they are directly
connected). Figure 4 shows a RNG with 50 nodes.

C. Minimum Spanning Tree

A minimum spanning tree is a tree connecting all the
nodes such that the total edge length is minimized. Since
the minimum spanning tree (MST) is a subgraph of RNG,

Fig. 4. Relative Neighborhood Graph with 50 nodes

we use RNG in the computation of MST. Note that RNG is
a subgraph of the Delaunay triangulation, and the Delaunay
triangulation is a planar graph. Thus, the number of edges
in RNG is bounded by3n − 6 ∗. We then only need to ex-
amineO(n) edges for inclusion/exclusion in the MST. An
example of a 50 node MST is shown in Figure 5.

Fig. 5. Minimum Spanning Tree with 50 nodes

D. Algorithms

In our simulation, we use sequential algorithms (single
processor) to compute the graphs and then compare the
graph properties of the produced topologies. The sequential
minR algorithm has a computational cost ofO(n2 log

√
A)

because there can be at mostlog
√

A iterations, where each
iteration checksn2 node pairs.

A brute-force sequential RNG algorithm has a computa-
tional cost ofO(n3), by checking each node with each of

∗This is a corollary of Euler’s polyhedra formula which was written in a
letter from Euler to Goldbach in 1750.



the n2 possible edges. However, this can be improved by
using a pre-computed Delaunay triangulation (DT). Since
RNG is a subgraph of DT, it suffices to check each node
against each of the DT edges. This checking step takes
O(n2) time since DT hasO(n) edges. The pre-computation
of DT takesO(n log n) time [12].

The sequential MST algorithm makes use of the previ-
ously computed RNG. The algorithm first sorts the edges
of RNG with respect to the edge length, from shortest to
longest. This takesO(n log n) operations. An edge is in-
cluded in MST if it does not create a cycle in the graph.
This is performed by using disjoint sets. Nodes that are
connected are placed in the same set. If the tested edge con-
nects two nodes belonging to different sets, then the edge is
added to MST and we take the union of the two sets. If
the tested edge connects two nodes belonging to the same
set, then this edge creates a cycle and it is rejected. Using
the union-find data structure, the number of operations for
computing MST is bounded byO(n log n) when the RNG
is given.

In this paper, our goal is to compare the graph proper-
ties of minR, RNG and MST. Hence, we implemented the
algorithms on the sequential model only. From our simu-
lation, RNG compares favorably with minR and MST (see
Table I). We compare the quality of each topology with re-
spect to each metric. Table I summarizes the result obtained
by generating 1000 different placements of 800 nodes each.
In the table, a score between0 and100 is assigned to each
topology considering its performance with respect to the
specific metric. The best performance gets100 and the
worst gets0. Other scores are assigned accordingly in ref-
erence to the best and worst performances.

performance score minR MST RNG

hop diameter 100 0 65
average power 0 100 75
average node degree 0 100 96
num. biconnected components 100 0 95
biconnected component size 100 0 94

TABLE I

PERFORMANCE COMPARISONS FOR MINR, MST, RNG

To make this result more practical, we designed a dis-
tributed algorithm for RNG in a separate paper[13]. The
distributed algorithm assumes that each node has an omni-
directional antenna for communication. Each node can
sense the direction of incoming signals and that transmit
power can be controlled between zero and maximum power.
Assuming that at least one node is awake initially, all the
nodes will become awake inO(D) time, whereD is the
diameter of the RNG. After each node is awake, it takes
constant time for each node to compute RNG locally. That
is, each node only need to determine the RNG edges con-
necting itself with other nodes.

E. Simulation Results

For our simulation† runs, we generatedn nodes, ran-
domly placed in an areaA, where5 ≤ n ≤ 800, andA
is a fixed area of6002 units2, and diagonal600

√
2 units.

Two uniformly distributed random integers are generated
as the coordinate of each node. For eachn, we make 1000
runs. In each run, we use the same set of nodes for the com-
putation of the minimum radius graph (minR), the relative
neighborhood graph (RNG) and the minimum spanning tree
(MST).

From the simulation, we observe the following:
• radius: In minR, every node is required to use the same
radiusd; thus,d is the smallest radius which renders a con-
nected graph. For RNG and MST, the radius is the longest
edge (in Euclidean distance) in the graphs, assuming dif-
ferent transmission radii were possible. Figure 6 shows
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Fig. 6. Maximum transmission radius, averaged over 1000 runs.

the plot of the average maximum radius with respect to the
number of nodes, normalized with respect to the diameter
of A which is600

√
2. As expected, the radius decreases as

the number of nodes increases for all three graphs. On the
average, MST requires a smaller radius than RNG, where
RNG requires a smaller radius than minR. Note that asn
increases, the performance of RNG is closer to MST than it
is to minR.
• hop diameter: the hop diameter of a network is the max-
imum number of hops among the shortest paths connecting
any pair of nodes. This can be used as a lower bound for
the number of transmissions required for broadcast. There-
fore, it is important to obtain a topology which minimizes
the hop diameter. Note that, a partitioned network has hop
diameter+∞. Figure 7 shows the plot of hop diameters
with respect to the number of nodes. On the average, minR
has the lowest hop diameter and MST has the highest. It
is worth noting that the RNG hop diameter is closer to the
minR than it is to the MST, which means RNG is almost as
good as minR in this respect.
• edge density: the edge density of a graph is computed
relative to the maximum number of all possible edges. A
graph withn nodes can have at mostn (n−1)

2 edges. Let

†We have implemented the sequential algorithms in JAVA (version 1.2)
on a Sun Ultra-10 workstation.
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Fig. 7. hop diameter, averaged over 1000 runs.

this number bemaxE. The density of a graphG = (V, E)
is defined to be|E|/maxE, where density is a real num-
ber between0 and1. We can then compare the densities
of MST, RNG and minR. From Figure 8, we observe that
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Fig. 8. edge density, normalized and averaged over 1000 runs.

the edge densities of both MST and RNG are very low. As
a matter of fact, the plots of MST and RNG almost coin-
cide with each other. In Figure 8, minR has a higher edge
density, however, it also decreases very fast as the number
of node increases. This is to be expected because asn in-
creases, the number of all possible edges increases quadrat-
ically. On the other hand, asn increases, the radius in minR
decreases (Figure 6), resulting in fewer edges. Thus, the
edge density decreases. A lower edge density may lead to a
shorter transmission schedule.
• node degree: the node degree is the number of neigh-
bors having direct communication with the node. A lower
node degree implies a lower interference with neighbors,
if a node may only communicate with directly connected
neighbors while other nodes in the neighborhood could be
turned off. The node degree affects the scheduling of trans-
missions. A higher node degree implies that a longer sched-
ule is needed. For each graph, we find the node with the
highest node degree, defined as the maximum degree of the
graph. In Figure 9, RNG and MST have low node degrees
compared to minR. Asn increases, the maximum node de-
gree in MST and RNG approaches a small constant. On the
other hand, the maximum node degree of minR appears to
increase linearly with respect ton. This makes RNG and
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Fig. 9. maximum node degree, averaged over 1000 runs.

MST more scalable when local scheduling is used.
• number of biconnected components: a biconnected
component is a maximal subgraph of a connected graph
such that the deletion of any node does not disconnect
the subgraph. The number of biconnected components re-
veals the number of weak points within the network topol-
ogy. Since biconnected components are connected by ar-
ticulation points whose failure results in a partitioned net-
work, fewer biconnected components implies a more fault-
tolerant network. Since MST is a tree, it does not contain
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Fig. 10. number of biconnected components, averaged over 1000 runs.

biconnected components (unless we consider each node to
be biconnected with itself). Figure 10 shows that minR has
fewer biconnected components than RNG. To clarify, in the
sparse sub-graphs of RNG, each sub-graph may have a tree
topology. In that case, each node is counted as a single
biconnected component. This may explain why the num-
ber of biconnected components in RNG seems to be much
higher, compared to minR.
• largest biconnected component size: a connected graph
may contain several biconnected components. The largest
biconnected component is the one containing the most
number of nodes. The size of the component is the num-
ber of nodes it contains. By examining the largest bicon-
nected component, we can determine what percentage of
the nodes are not biconnected with the majority of nodes.
If the largest biconnected component contains90% of the
nodes, then even if the number of biconnected components
is high, we are guaranteed that90% of the network is fault-



tolerant. Figure 11 shows that for mostn values, the largest
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Fig. 11. fraction of nodes in largest biconnected component, normalized
and averaged over 1000 runs.

biconnected component in minR contains over90% of the
nodes. The performance of RNG is not far behind with86%
atn = 100 and over90% for n ≥ 200.

IV. CONCLUSION

The desire to efficiently reduce the overall energy-per-bit
of a node and the analysis indicating the low probability of
a bit of information successfully being disseminated among
the other nodes with zero knowledge of network topology
motivated our study into the graph connectivity for reducing
overall transmissions.

From the simulation results, we motivate minR, RNG
and MST as follows. To guarantee connectivity, we need
a spanning tree at the least. MST is a good choice because
it strives to minimize power for fixed data rate. The MST
is good in terms of the average maximum transmission ra-
dius, edge density and maximum node degree. However,
the MST is not fault-tolerant because any node or edge fail-
ure will partition the network. It then makes sense to look
at a super-graph of MST which still has some of the good
graph properties of the MST. For this, we proposed the
RNG. The RNG also is good in terms of transmission ra-
dius, edge density, and maximum node degree. In addition,
our simulation shows that forn ≥ 100 (or the node density
≥ n

A = 100
6002 = 1

3600 ), the largest biconnected component
of RNG contains at least86% of the nodes. Although this
is not as good as minR, it is close. The RNG may have a
higher number of biconnected components. However, since
RNG’s largest biconnected component contains the major-
ity of nodes, this offsets the importance of the number of
biconnected components. Concerning hop diameter, RNG
is better than MST and worse than minR. However, RNG’s
hop diameter is closer to minR than it is to MST. The hop
diameter can be used as a measure for information dissem-
ination. While the worst case analysis indicates thatO(n)
transmissions might be needed for broadcasting one bit of
information, on the average, the number of transmissions
needed may be closer to hop diameter than ton. The minR
is good in terms of the hop diameter, the number of bi-
connected components and the average largest biconnected

component size. However, minR’s disadvantages are the
higher transmission radius, higher edge density and a node
degree which increases linearly with respect to the number
of nodes. In light of the above, we suggest that RNG can be
a good candidate to consider as a target topology for com-
munication in terms of minimizing power and interference
while guaranteeing connectivity (and biconnectivity for the
majority of the nodes). From the simulation, RNG shows
good graph properties when compared with minR and MST.

For future work, we propose to investigate other topolo-
gies related to RNG, RNG’s implications on amplifiers,
and how to extend proximity graphs to model environments
with obstacles blocking line-of-sight between nodes.
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